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Abstract— We consider a class of convex distributed sta-
tistical learning problems with inequality constraints in an
adversarial scenario. At each iteration, an α-fraction of m
machines, which are supposed to compute stochastic gradients
of the loss function and send them to a master machine, may
act adversarially and send faulty gradients. To guard against
defective information sharing, we develop a Byzantine primal-
dual algorithm. For α ∈ [0, 0.5), we prove that after T iterations
the algorithm achieves Õ(1/T + 1/

√
mT + α/

√
T ) statistical

error bounds on both the optimality gap and the constraint
violation. Our result holds for a class of normed vector spaces
and, when specialized to the Euclidean space, it attains the
optimal error bound for Byzantine stochastic gradient descent.

I. INTRODUCTION

In this paper, we examine a class of distributed statistical
learning problems with inequality constraints in an adversar-
ial scenario. Let {f(w; z), z ∈ Z} be a collection of closed
convex functions whose domains contain the common closed
convex set W ⊂ Rd, let {gj(w)} be a collection of convex
functions on W , and let D be an unknown distribution over
the sample space Z . The objective is to learn a model w?

by finding the minimizer to the convex program,

minimize
w∈W

F (w) := Ez∼D [ f(w; z) ]

subject to gj(w) ≤ 0, j = 1, . . . , k.
(1)

The formulation (1) includes a broad class of con-
strained learning problems, e.g., constrained least-squares
with f(w; z) = (y − wTx)2, z = (x, y), and gj(w) =
Ajw − bj . We focus on a distributed computational model
with 1 master machine and m worker machines, where the
master cannot collect all the data from the distribution D;
instead, at each time, the master receives m estimates of
the gradient ∇F (w) from m workers. A popular application
is the federated learning [1] where data is spread over a
large number of worker machines and the master machine
is unable to collect/store all data from mobile devices. In
large-scale distributed learning, some machines can fail or
even intentionally send malicious information [2]. Thus,
studying distributed learning algorithms and their robustness
against faulty information is an important and timely topic. In
this paper, we consider an adversarial setup where workers
behave maliciously by sending arbitrary vectors; they are
called Byzantine machines.

Financial support from the National Science Foundation under Awards
ECCS-1708906 and ECCS-1809833 is gratefully acknowledged.
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Our contribution: In this paper, we propose a new variant
of the primal-dual method – Byzantine primal-dual (Byzan-
tine PD) algorithm – for solving problem (1) in an adversarial
scenario where an α-fraction of m workers are Byzantine.
For α ∈ [0, 0.5), we prove that after T iterations the
algorithm achieves Õ(1/T + 1/

√
mT + α/

√
T ) statistical

error bounds on both the optimality gap and the constraint
violation. This result holds for a large class of normed vector
spaces and matches the optimal statistical error bound for
the problem (1) without constraints in the Euclidean space
setting. To the best of our knowledge, our work provides the
first study of primal-dual methods for distributed constrained
learning problems in the Byzantine adversarial setting.

Related work: Closely related studies on primal-dual
methods are references [3]–[9]. For general deterministic
convex optimization problems with convex nonlinear con-
straints, references [4], [5] propose primal-dual algorithms
based on drift-plus-penalty [10] and prove O(1/T ) conver-
gence rate on both optimality gap and constraint violation.
When the objective function and constraints are time-varying,
references [3], [6]–[9] propose online primal-dual methods
with convergence guarantees regarding regret and constraint
violation. However, all of these studies assume access to
exact gradients of objective/constraint functions or their
samples. It is not the case for practical large-scale distributed
learning. To guard against adversarial gradients, this paper
generalizes the primal-dual method to Byzantine stochastic
optimization in general normed vector spaces.

Our distributed computational model is also relevant to
studies of gradient descent [11]–[14] or mirror descent [15]
in the Byzantine setting. To mitigate Byzantine machines,
the median aggregation has been extensively used. However,
apart from reference [15], most other approaches only work
in the Euclidean space setting. To add the flexibility to our
algorithm, we utilize median aggregation in general normed
vector spaces, as done in reference [15]. On the other hand,
it is tempting to extend gradient descent methods by adding
projection to deal with constraints. However, this is not
suitable for our problem since nonlinear constraints can make
a projection as hard as solving the original problem. Instead,
we employ the primal-dual method to deal with constraints.
Thus, our work departs from several unconstrained results,
e.g., those reported in references [14], [15], and we focus on
the constrained learning problems.

Paper outline: In Section II, we present our main assump-
tions and describe the algorithm. We conduct our analysis in
Section III and present convergence results in Section IV.
We conclude the paper in Section V.
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Notation: The Banach space (Rd, ‖ · ‖p), p ∈
[1,∞), is 2-smooth if ρ(s) ≤ Cs2 where ρ(s) :=
sup‖x‖= 1,‖y‖= s{ 1

2 (‖x+ y‖+ ‖x− y‖)− 1} is the smooth
modulus and C is a constant. Its dual is (Rd, ‖ · ‖∗) where
the dual norm ‖ · ‖∗ is defined as ‖z‖∗ = sup‖x‖≤ 1 〈z, x〉.
A function f is L-Lipschitz with respect to a norm ‖ · ‖ if
|f(x) − f(y)| ≤ L ‖x − y‖. A function is β-smooth with
respect to a norm ‖ · ‖ if ‖∇f(x)−∇f(y)‖∗ ≤ β ‖x− y‖.
A function is σ-strongly convex with respect to the norm
‖ · ‖ if f(y) ≥ f(x) + 〈∇f(x), y − x〉 + σ

2 ‖y − x‖2. For
a 1-strongly convex function φ with respect to the norm
‖ · ‖, the Bregman divergence D(x, y) generated by φ is
D(x, y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉.

II. ASSUMPTIONS AND ALGORITHM

Let [n] := {1, . . . , n} and let us arrange g1(w), . . . , gk(w)
in the problem (1) into a vector g(w) := (g1(w), . . . , gk(w))
and rewrite constraints as g(w) ≤ 0.

Assumption 1 (Basic properties):
(i) The domain W ∈ Rd is a compact, convex set with di-

ameter W , and there exist R and G such that D(x, y) ≤
R2 for all x, y ∈ W and ‖g(w)‖ ≤ G for all w ∈ W;

(ii) The objective function F (w) and the constraint func-
tions gj(w), with j ∈ [k], are convex and smooth onW .
Each gj(w) is also Lipschitz continuous with parameter
Lj,g for all j ∈ [k]. We denote smoothness parameters
of F (w) and gj(w) as βF and βj,g , respectively;

(iii) There exists an optimal solution w? ∈ W that solves
the problem (1).

Assumption 2 (Existence of Lagrange multipliers): There
exists a Lagrange multiplier λ? := (λ?1, . . . , λ

?
k) ≥ 0

such that q(λ?) = minw∈W{F (w): g(w) ≤ 0} where
q(λ) = minw∈W{F (w) + 〈λ, g(w)〉} is the dual function.

In our computational model with 1 master and m workers,
at iteration t, each worker i receives current iterate wt,
utilizes private data zit to compute the associated gradient,
and returns it to the master. There are two possibilities: (i) a
non-Byzantine worker returns ∇f(wt; z

i
t) with zit ∼ D; (ii) a

Byzantine worker returns arbitrary vector adversarially. After
receiving information from all workers, the master aggregates
them for optimization, generates next iterate wt+1, and then
broadcasts it. The learning goal for the master is to obtain an
approximate solution to the problem (1) after T iterations.

Let Ω ⊆ {1, . . . ,m} be an unknown set of non-Byzantine
machines. We denote by ∇it := ∇f(wt; z

i
t) the sampled

gradient and ∇t := ∇F (wt) the true gradient, respectively.

Assumption 3: (i) At each iteration t, there exists V > 0
such that ‖∇it −∇t‖∗ ≤ V for machine i ∈ Ω. (ii) There is
an α-fraction of Byzantine machines with α ∈ [0, 0.5).

We only impose Assumption 3 (i) on an unknown set
of non-Byzantine machines. This does not simplify the
Byzantine issue since we can always take a large V .

Let w0 ∈ Rd be an initial point. Algorithm 1 has two
stages. The first stage (lines 3–6) estimates the set Ωt of
non-Byzantine machines by maintaining three estimation

sequences for each machine i ∈ [k], i.e., received gradient
∇it, cumulative gradient Bit , and gradient-related value Ait,

Bit :=

t∑
τ = 0

∇iτ and Ait :=

t∑
τ = 0

〈∇iτ , wτ − w0〉.

Let ∇med
t be the median of {∇1

t , . . . ,∇mt }, Bmed
t be the

median of {B1
t , . . . , B

m
t }, and Amed

t be the median of
{A1

t , . . . , A
m
t }. We begin Ω0 with [m] and update Ωt by a

set of machine i from Ωt−1 whose ∇it is 4V -close to ∇med
t ,

IB-close to Bmed
t , and IA-close to Amed

t . Using Ωt, we next
estimate the population gradient ∇t by the averaged one (6).

The second stage (line 7) maintains the primal-dual up-
dates in terms of wt ∈ W and qj,t ∈ R, with j ∈ [k],
using the estimated gradient ξt. At iteration t, it updates
the primal variable wt+1 by a solution to the proximal-type
problem with Bregman divergence. The dual variable qj,t+2

is updated via a simple max function. Since the dual update
mimics the queueing equation [4], the dual variables are also
called virtual queues. In the next section, we discuss some
important properties of iterates wt and qj,t, with j ∈ [k].

III. PRELIMINARIES AND BASIC ANALYSIS

Our convergence analysis relies on two gradient-related
quantities generated by Algorithm 1,

E1 :=

T−1∑
t= 0

∑
i∈Ωt

〈∇it − ∇t, wt − w?〉

E2 :=
1

T

T−1∑
t= 0

∥∥∥∥ 1

m

∑
i∈Ωt

(∇it − ∇t)
∥∥∥∥2

∗

(2)

where E1 determines the bias arising from the stochastic
gradient and the adversarial workers, and E2 is the variance
of estimating the true gradient.

By the concentration bound [16] in a 2-smooth Banach
space, we can choose proper parameters IA, IB , and ∆ in
Algorithm 1 such that the median aggregation in line 6 allows
bounds on E1 and E2 in Lemma 1. We refer readers to [15]
for details; [14] for a special Euclidean case.

Lemma 1 (Error bounds): [15, Lemmas 8 and 9] Let
(Rd, ‖ · ‖∗) be 2-smooth and let Assumption 3 hold. With
probability 1−δ, for (2) we have (i) |E1| ≤ 4WV∆

√
2mT+

16αmWV∆
√

2T ; and (ii) E2 ≤ 32α2V 2 + 16V 2∆2

m .

Let qt = (q1,t, . . . , qk,t) be the vector of virtual queues and
let Lt = 1

2‖qt‖
2 be a quadratic Lyapunov function. We define

the Lyapunov drift as dt := Lt+1−Lt = 1
2 (‖qt+1‖2−‖qt‖2)

for t ≥ 1. For standard properties of the virtual queues and
the Lyapunov drift, we refer readers to Appendix A.

By Assumption 1, the smoothness of gj with modulus βj,g
implies that the function (qj,t+1 + gj(wt))gj(w) is smooth
in w with modulus (qj,t+1 + gj(wt))βg,j . By the descent
lemma [17, Proposition A.24], we have the following lemma.

Lemma 2: Let Assumption 1 hold. For Algorithm 1 with
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t ≥ 0, we have(
qt+1 + g(wt)

)T
g(wt+1)

≤
k∑
j=1

(
qj,t+1 + gj(wt)

)(
gj(wt) + 〈∇gj(wt), wt+1 − wt〉

)
+

(qt+1 + g(wt))
Tβg

2
‖wt+1 − wt‖2

where βg := (β1,g, . . . , βk,g).

The following pushback property is useful for analyzing
the primal update in line 7 of Algorithm 1.

Lemma 3 (Pushback property): [18, Lemma 1] Let f :
W → R be a convex function, η > 0, and y ∈ W . If x? =
argminx∈W f(x) + ηD(x, y), then f(x?) + ηD(x?, y) ≤
f(z) + ηD(z, y)− ηD(z, x?) for any z ∈ W .

Denote ιt := L2
g + βF + (qt+1 + g(wt))

Tβg . We relate
the objective function in (1) to the errors (2) via Lemmas 2
and 3 and establish a useful inequality (3) on the drift.

Lemma 4: Let Assumption 1 hold. Suppose ηt > ιt. In
Algorithm 1, for t ≥ 0, we have

dt+1 +
1

m

∑
i∈Ωt

(F (wt+1) − F (w?))

≤ 1

m

∑
i∈Ωt

〈
(∇it −∇t), w? − wt

〉
+

1

2(ηt − ιt)

∥∥∥∥ 1

m

∑
i∈Ωt

(∇it −∇t)
∥∥∥∥2

∗

+ ηt
(
D(w?, wt)−D(w?, wt+1)

)
+

1

2

(
‖g(wt+1)‖2 − ‖g(wt)‖2

)
.

(3)

Proof: See Appendix B.

In Lemma 4, we have established an upper bound on our
drift-plus-penalty term in (3). The first two terms in the
bound describes bias and variance of gradient estimation
that relates to (2). The last two terms account for the
regularization and the constraints. Hence, (3) is different
from bounds in standard drift-plus-penalty analysis, e.g.,
references [4], [10], and the constant stepsize rule is no
longer valid. We next present an adaptive stepsize rule and
establish our convergence results.

IV. MAIN RESULTS

We now provide the convergence analysis of Algorithm 1.
We adaptively adjust the parameter ηt using ιt := L2

g+βF +
(qt+1 + g(wt))

Tβg .
(i) If α ∈ [ 1/

√
m, 0.5 ), we choose

ηt =

ι0 +
√
T , t = 0;

max
{
ηt−1, ιt +

√
T
}
, t ≥ 1.

(4)

(ii) If α ∈ [ 0, 1/
√
m ), we choose

ηt =

ι0 +
√
T/m, t = 0;

max
{
ηt−1, ιt +

√
T/m

}
, t ≥ 1.

(5)

It is easy to see that ηt is non-decreasing for t ≥ 0 and
η0 > 0 from (ii) in Lemma 10.

Lemma 5: Let Assumption 1 hold. Then, for t ≥ 1,
t−1∑
τ = 0

ητ
(
D(w?, wτ )−D(w?, wτ+1)

)
≤ ηt−1R

2.

Proof: See Appendix C.

Algorithm 1 Byzantine Primal-Dual (Byzantine PD)
Initialization: Initial point w0 ∈ W , initial virtual queues
qj,1 = max{0,−gj(w0)},∀j ∈ [k], diameters W,R > 0,
number of iterations T , thresholds IA = 4WV∆

√
2T and

IB = 4V∆
√

2T where ∆ := R+ 2
√

2 log (8
√

2mT/δ).
1: Ω0 ← [m];
2: for all t← 0 to T − 1 do
3: for all i← 1 to m do
4: receive ∇it ∈ Rd from worker i ∈ [m] and update
Bit ←

∑t
τ = 0∇iτ and Ait ←

∑t
τ = 0〈∇iτ , wτ − w0〉.

5: end for
6: gradient estimation

• Amed
t ← median{A1

t , . . . , A
m
t }.

• Bmed
t ← Bit where i ∈ [m] is any machine s.t.

|{j ∈ [m] : ‖Bit −B
j
t ‖∗ ≤ IB}| >

m

2
.

• ∇med
t ← ∇it where i ∈ [m] is any machine s.t.

|{j ∈ [m] : ‖∇it −∇
j
t‖∗ ≤ 2V }| > m

2
.

• Ωt ← Ωt−1 ∩ {i ∈ [m] : |Ait − Amed
t | ≤ IA, ‖Bit −

Bmed
t ‖∗ ≤ IB , and ‖∇it −∇med

t ‖∗ ≤ 4V }.
• compute the gradient

ξt =
1

m

∑
i∈Ωt

∇it. (6)

7: primal-dual update
• primal update

wt+1 ← argmin
w∈W

〈
ξt +

k∑
j= 1

(
qj,t+1 + gj(wt)

)
∇gj(wt), w

〉
+ ηtD(w,wt).

• dual update for all j ∈ [k]

qj,t+2 ← max
(
− gj(wt+1), qj,t+1 + gj(wt+1)

)
.

8: end for

9: Output: w̄T :=
1

T

T−1∑
τ = 0

wt+1

Lemma 6: Let (Rd, ‖ · ‖∗) be 2-smooth and let Assump-
tions 1–3 hold. For 1 ≤ t ≤ T , with probability at least 1−δ,
one of the following holds

(i) For α ∈ [1/
√
m, 0.5) and ηt given by (4),

‖qt+1‖ ≤ ‖λ?‖ +
√

2ηt−1R + G + C1 (7)
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(ii) For α ∈ [0, 1/
√
m) and ηt given by (5),

‖qt+1‖ ≤ ‖λ?‖ +
√

2ηt−1R + G + C2. (8)

Here, C1 =
√
C1,1 + C1,2 and C2 =

√
C2,1 + C2,2

with C1,1 = 8WV∆
√

2T√
m

+ 16V 2∆2
√
T

αm , C1,2 = 32α(V 2 +
√

2WV∆)
√
T , C2,1 = 8WV∆

√
2T+16V 2∆2

√
T√

m
, and C2,2 =

32α(WV∆
√

2T + αV 2
√
mT ).

Proof: See Appendix D.

Lemma 7: Let (Rd, ‖ · ‖∗) be 2-smooth and let Assump-
tions 1–3 hold. For 1 ≤ t ≤ T , with probability at least 1−δ,
one of the following holds,

(i) For α ∈ [1/
√
m, 0.5) and ηt given by (4),

ηt ≤ ηmax
1 :=

(√
η̄1 +

√
T +
√

2R‖βg‖
)2

(ii) For α ∈ [0, 1/
√
m) and ηt given by (5),

ηt ≤ ηmax
2 :=

(√
η̄2 +

√
T/m+

√
2R‖βg‖

)2

where η̄i := L2
g + βF + (2G+Ci + ‖λ?‖)‖βg‖ for i = 1, 2.

Proof: See Appendix E.

We are now ready to establish convergence in terms of the
optimality gap and the constraint violation.

Theorem 8: Let (Rd, ‖ · ‖∗) be 2-smooth and let Assump-
tions 1–3 hold. With probability at least 1−δ, if T ≥ m one
of the following holds,

(i) For α ∈ [1/
√
m, 0.5) and ηt given by (4),

F (w̄T )− F (w?) ≤ O

(
CF,0
T

+
CF,1√
mT

+ α
CF,2√
T

)
;

(ii) For α ∈ [0, 1/
√
m) and ηt given by (5),

F (w̄T )− F (w?) ≤ O

(
CF,0
T

+
CF,3√
mT

+ α
FF,4√
T

)
where w̄T := 1

T

∑T−1
t= 0 wt, CF,i, i = 0, 1, . . . , 4 are con-

stants that only depend on parameters {G,R,W, V,∆}.
Proof: We show the first case using ηt in (4). We begin

with (3) in Lemma 4. Notice that ηt − ιt ≥
√
T . Thus, we

can simplify (3) and show that

1

mT

T−1∑
t= 0

∑
i∈Ωt

(F (wt+1)− F (w?)) +
1

T

T−1∑
t= 0

dt+1

≤ 1

mT

T−1∑
t= 0

∑
i∈Ωt

〈(∇it −∇t), w? − wt〉

+
1

2T
√
T

T−1∑
t= 0

∥∥∥∥ 1

m

∑
i∈Ωt

(∇it −∇t)
∥∥∥∥2

∗

+
1

T

T−1∑
t= 0

ηt
(
D(w?, wt)−D(w?, wt+1)

)
+

1

2T

T−1∑
t= 0

(
‖g(wt+1)‖2 − ‖g(wt)‖2

)
.

Using E1 and E2 in (2) and Lemma 10 (iii) yields

1

mT

T−1∑
t= 0

∑
i∈Ωt

(F (wt+1)− F (w?))

≤ |E1|
mT

+
E2

2
√
T

+
G2

2T

+
1

T

T−1∑
t= 0

ηt
(
D(w?, wt)−D(w?, wt+1)

)
.

(9)

Lemmas 5 and 7 allow us to bound the right-hand side
of (9) via |E1|

mT + E2

2
√
T

+
ηmax
1 R2

T . Furthermore, substituting
the bounds on |E1| and E2 in Lemma 1 and the bound on
ηmax

1 in Lemma 7 into this term leads to a bound that has
the order of

G2+R2(L2
g+βF+R2+G+‖λ?‖)

T + WV∆+V 2∆2
√
mT

+

αV+WV∆+R2
√
T

+ R2(
√
WV∆+V∆)

m1/4T 3/4 +
√
αR

2(V+
√
WV∆)

T 3/4 . Let

T ≥ m. It is clear that 1
m1/4T 3/4 ≤ 1√

mT
and

√
α

T 3/4 ≤ α√
T

.
Thus, we obtain the first bound. We complete the proof by
applying the convexity of F to the left-hand side of (9) so
that it is lower bounded by 1

2 (F (w̄T )− F (w?)).
Similarly, we can show the second case using ηt in (5)

and ηmax
2 in Lemma 7.

Theorem 9: Let (Rd, ‖ · ‖∗) be 2-smooth and let Assump-
tions 1–3 hold. With probability at least 1−δ, if T ≥ m one
of the following holds,

(i) For α ∈ [1/
√
m, 0.5) and ηt given by (4),

gj(w̄T ) ≤ O

(
Cg,0
T

+
Cg,1√
mT

+ α
Cg,2√
T

)
;

(ii) For α ∈ [0, 1/
√
m) and ηt given by (5),

gj(w̄T ) ≤ O

(
Cg,0
T

+
Cg,3√
mT

+ α
Cg,4√
T

)
where w̄T := 1

T

∑T−1
t= 0 wt+1, Cg,i, i = 0, 1, . . . , 4 are

constants that only depend on parameters {G,R,W, V,∆}.
Proof: Since gj , j ∈ [k] are convex, we can apply the

Jensen’s inequality and Lemma 11,

gj(w̄T ) ≤ 1

T

T−1∑
t= 0

gj(wt+1) ≤ 1

T
qj,T+1 ≤

1

T
‖qT+1‖.

Next, we apply Lemma 7 and discuss two cases.

gj(w̄T ) ≤


1
T

(
‖λ?‖+

√
2ηmax

1 R+G+ C1

)
, for (i);

1
T

(
‖λ?‖+

√
2ηmax

2 R+G+ C2

)
, for (ii).

Since x2 + ax ≤ (a + 1)x2 + a/4 for all x and a ≥ 0, we
complete the proof using the expressions for C1 and C2 in
Lemma 6, ηmax

1 and ηmax
2 in Lemma 7, and T ≥ m.

Remark 1: When all workers are non-Byzantine, i.e., α =
0, the first two terms in the bounds in Theorems 8 and 9 are
similar to the rate of mini-batch SGD [19]. The last term
determines the effect of Byzantine workers for α 6= 0. If the
gradients ∇it are unbiased, the dual norm bound of gradients
becomes V = 0 and the bounds are O(1/T ). This matches
the optimal rate for the convex stochastic program.
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V. CONCLUSION

We have developed a variant of the primal-dual algorithm
for constrained distributed learning problems in the Byzan-
tine setting. We have proved the robustness against Byzantine
failures whenever the fraction of Byzantine machines satis-
fies α ∈ [0, 0.5). When the objective and constraint functions
are convex and smooth the algorithm after T iterations enjoys
Õ(1/T + 1/

√
mT +α/

√
T ) statistical error bounds on both

the optimality gap and the constraint violation.

APPENDIX

A. Properties of Virtual Queues

Lemma 10 (Property of virtual queues): [4, Lemma 3]
In line 7 of Algorithm 1, we have

(i) For any j ∈ [k], qj,t ≥ 0 for t ≥ 1;
(ii) For any j ∈ [k], qj,t + gj(wt−1) ≥ 0 for t ≥ 1;

(iii) ‖q1‖2 ≤ ‖g(w0)‖2 and ‖qt‖2 ≥ ‖g(wt−1)‖2 for t ≥ 2.
Lemma 11 (Constraint violation): [4, Lemma 7] Let qt

with t ≥ 1 be the sequence generated by Algorithm 1. For
any j ∈ [k], we have qj,t+1 ≥

∑t−1
τ = 0 gj(wτ+1) for all t ≥ 1.

Lemma 12 (Drift property): [4, Lemma 4] In Algo-
rithm 1, the Lyapunov drift satisfies dt ≤ qTt g(wt) +
‖g(wt)‖2 for all t ≥ 1.

B. Proof of Lemma 4

Applying Lemma 3 to line 7 of Algorithm 1 with x? =
wt+1, z = w?, and y = wt yields

〈ξt, wt+1〉 +

k∑
j= 1

(
qj,t+1 + gj(wt)

)
∇gj(wt)Twt+1

≤ 〈ξt, w?〉 +

k∑
j= 1

(
qj,t+1 + gj(wt)

)
∇gj(wt)Tw?

+ ηtD(w?, wt) − ηtD(w?, wt+1)− ηtD(wt+1, wt).

Adding −〈ξt, wt〉 +
∑k
j= 1

(
qj,t+1 + gj(wt)

)(
gj(wt) −

∇gj(wt)Twt
)

to both sides of the inequality above and
applying the convexity of gj and the inequality qj,t+1 +
gj(wt) ≥ 0 from Lemma 10 (ii) lead to

〈ξt, wt+1 − wt〉

+

k∑
j= 1

(
qj,t+1 + gj(wt)

)(
gj(wt) +∇gj(wt)T (wt+1 − wt)

)
≤ 〈ξt, w? − wt〉 +

k∑
j= 1

(
qj,t+1 + gj(wt)

)
gj(w

?)

+ ηtD(w?, wt) − ηtD(w?, wt+1)− ηtD(wt+1, wt).

Moreover, we remove
∑k
j= 1

(
qj,t+1 + gj(wt)

)
gj(w

?) with-
out changing the inequality due to feasibility of w?. Thus,

〈ξt, wt − w?〉 + ηtD(wt+1, wt) +

k∑
j=1

(
qj,t+1 + gj(wt)

)(
gj(wt) +∇gj(wt)T (wt+1 − wt)

)
≤ 〈ξt, wt − wt+1〉 + ηt

(
D(w?, wt)−D(w?, wt+1)

)
.

(10)

By the convexity of F and the smoothness, i.e., F (wt) ≥
F (wt+1)−〈∇t, wt+1−wt〉− βF

2 ‖wt+1−wt‖2, we can have
simplify (10) into

1

m

∑
i∈Ωt

(F (wt+1)− F (w?))

+

k∑
j=1

(
qj,t+1 + gj(wt)

)(
gj(wt) +∇gj(wt)T (wt+1 − wt)

)
≤ 1

m

∑
i∈Ωt

〈(∇it −∇t), w? − wt〉 +
βF
2
‖wt+1 − wt‖2

+

〈
1

m

∑
i∈Ωt

(∇it −∇t), wt − wt+1

〉
+ ηt

(
D(w?, wt)−D(w?, wt+1)

)
− ηtD(wt+1, wt).

We add the inequality in Lemma 2 into the inequality above
and use the property of Bregman divergence D(wt+1, wt) ≥
1
2‖wt+1 − wt‖2 first, and then apply g(wt)

T g(wt+1) =
1
2

(
‖g(wt)‖2 + ‖g(wt+1)‖2 − ‖g(wt)− g(wt+1)‖2

)
and the

Lipschitz continuity of g,

1

m

∑
i∈Ωt

(F (wt+1)− F (w?)) + qTt+1g(wt+1)

≤ 1

m

∑
i∈Ωt

〈
(∇it −∇t), w? − wt

〉
+
ιt − ηt

2
‖wt+1 − wt‖2

+

〈
1

m

∑
i∈Ωt

(∇it −∇t), wt − wt+1

〉
+ ηt

(
D(w?, wt)−D(w?, wt+1)

)
− 1

2

(
‖g(wt)‖2 + ‖g(wt+1)‖2

)
(11)

where ιt := L2
g + βF + (qt+1 + g(wt))

Tβg .
Finally, we apply the drift property in Lemma 12 to (11),

the CauchySchwarz inequality, and bx−ax2 ≤ b2

4a , a, b > 0,〈
1

m

∑
i∈Ωt

(∇it −∇t), wt − wt+1

〉
+
ιt − ηt

2
‖wt+1 − wt‖2

≤
∥∥∥∥ 1

m

∑
i∈Ωt

(∇it −∇t)
∥∥∥∥
∗
· ‖wt − wt+1‖

+
ιt − ηt

2
‖wt+1 − wt‖2

≤ 1

2

1

ηt − ιt

∥∥∥∥ 1

m

∑
i∈Ωt

(∇it −∇t)
∥∥∥∥2

∗

where ηt > ιt. Combining this inequality above with (11)
yields the desired result.

C. Proof of Lemma 5

We expand
∑t−1
τ = 0 ητ

(
D(w?, wτ )−D(w?, wτ+1)

)
into

t−2∑
τ = 0

(ητ+1−ητ )D(w?, wτ+1)+η0D(w?, w0)−ηt−1D(w?, wt)

We complete proof by removing a term −ηt−1D(w?, wt) ≤
0 and applying D(w?, wτ ) ≤ R2 and non-decreasing ητ .

2264

Authorized licensed use limited to: University of Southern California. Downloaded on February 06,2022 at 22:06:28 UTC from IEEE Xplore.  Restrictions apply. 



D. Proof of Lemma 6

We show the first case using ηt given in (4). We begin
with (3) in Lemma 4. With a slight abuse of notation, we
use τ as time index and t as time horizon. According to (4),
we have ητ − ιτ ≥ α

√
T . This allows us to simplify (3),

1

mt

t−1∑
τ = 0

∑
i∈Ωτ

(F (wτ+1)− F (w?)) +
1

t

t−1∑
τ = 0

dτ+1

≤ 1

mt

t−1∑
τ = 0

∑
i∈Ωτ

〈(∇iτ −∇τ ), w? − wτ 〉

+
1

2αt
√
T

t−1∑
τ = 0

∥∥∥∥ 1

m

∑
i∈Ωτ

(∇iτ −∇τ )

∥∥∥∥2

∗

+
1

t

t−1∑
τ = 0

ητ
(
D(w?, wτ )−D(w?, wτ+1)

)
+

1

2t

t−1∑
τ = 0

(
‖g(wτ+1)‖2 − ‖g(wτ )‖2

)
.

Similar to previous notation of E1 and E2, for 1 ≤ t ≤ T ,
we introduce E′1 :=

∑t−1
τ = 0

∑
i∈Ωτ

〈∇iτ −∇τ , wτ −w?〉 and
E′2 := 1

t

∑t−1
τ = 0 ‖

1
m

∑
i∈Ωτ

(∇iτ−∇τ )‖2∗. With this notation,
we apply ‖q1‖2 ≤ ‖g(w0)‖2 and Lemma 5,

1

mt

t−1∑
τ = 0

∑
i∈Ωτ

(F (wτ+1)− F (w?))

≤ |E′1|
mt

+
E′2

2α
√
T

+
ηt−1R

2

t
+
G2

2t
− 1

2t
‖qt+1‖2.

(12)
Notice that 1

mt

∑t−1
τ = 0

∑
i∈Ωτ

(F (wτ+1) − F (w?)) ≥
1
2t

∑t−1
τ = 0(F (wτ+1) − F (w?)). By Assumption 2, we have

F (wτ+1) + 〈λ?, g(wτ+1)〉 ≥ F (w?) and thus,

1

2t

t−1∑
τ = 0

(F (wτ+1)− F (w?)) ≥ −
〈
λ?,

1

2t

t−1∑
τ = 0

g(wτ+1)

〉
≥ − 1

2t
‖λ?‖ · ‖qt+1‖

where the second inequality is due to Lemma 11. Combining
the inequality above with (12) shows ‖qt+1‖2 ≤ ‖λ?‖ ·
‖qt+1‖ + 1 , where 1 :=

2|E′
1|

m +
tE′

2

α
√
T

+ 2ηt−1R
2 + G2.

Solving this quadratic inequality in terms of ‖qt+1‖ yields

‖qt+1‖ ≤ 1
2‖λ

?‖ +
√

1
4‖λ?‖2 + 1 . (13)

It is easy to verify that the probability bounds on |E1| and
E2 in Lemma 1 also work for |E′1| and E′2 for all 1 ≤ t ≤
T . Using the inequality

√
x+ y + z ≤

√
x +
√
y +
√
z for

x, y, z ≥ 0, we obtain (7). It is clear from the initial qj,1 in
Algorithm 1 that (7) holds for t = 0. The second case has
similar proof as above. We omit it due to the space limit.

E. Proof of Lemma 7

We show the first case using ηt given in (4). We prove it
by induction. When t = 0, it is easy to verify η0 ≤ ηmax

1

by noting ‖q1 + g(w0)‖ ≤ ‖q1‖ + ‖g(w0)‖ ≤ 2G. Assume
ηt−1 ≤ ηmax1 . We need to show ηt ≤ ηmax

1 . By (4), it is
enough to show that L2

g +βF + (qt+1 + g(wt))
Tβg +

√
T ≤

ηmax
1 . Notice x2 + y2 + xy ≤ (x+ y)2,∀x, y ≥ 0.

L2
g + βF + (qt+1 + g(wt))

Tβg +
√
T

≤ L2
g + βF + ‖qt+1‖‖βg‖+ ‖g(wt)‖‖βg‖+

√
T

≤ η̄1 +
√
T +

√
2ηmax

1 R‖βg‖

= η̄1 +
√
T +
√

2R‖βg‖
√
η̄1 +

√
T + (

√
2R‖βg‖)2

≤ ηmax
1

where we use (7) in the second inequality. By induction, we
conclude the proof. The second case has a similar proof.
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